Synthesis and Structures of the Heavier Alkali Metal Alkyls; the X-ray Structures of $[\text{Na}(\mu-R)]_{\infty}$ and $[\text{Rb}(\mu-R)(pmdeta)]_2$ $[\text{R} = \text{CH}(\text{SiMe}_3)_2$, pmdeta = $(\text{Me}_2\text{NCH}_2\text{CH}_2)_2\text{NMe}]$ [†]

Peter *6.* **Hitchcock, Michael F. Lappert, Wing-Por Leung, Liu Diansheng and Tian Shun**

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, UK BN 1 9QJ

The crystalline, hexane-soluble metal alkyls $[Na(\mu-R)]_{\infty}$ 1, $[KR(pmedta)]_m$, and $[Rb(\mu-R)(pmdeta)]_2$ 2 $[R = CH(SiMe_3)_2]$, pmdeta = $(Me₂NCH₂CH₂)₂NMe$] have been prepared from LiR with equimolar portions of NaOBut, KOBut + pmdeta, and $Rb(OC_6H_2Bu_2-2,6-Me-4) +$ pmdeta, respectively; 1 has chains of alternating cations and planar R- anions which are approximately orthogonal to the chains, (Na–C)_{av} 2.555(10) Å, (Na–C–H)_{av} 76(3) and (Na–C–Na)_{av} 152(1)°, whereas **2** consists of discrete dimers, (Rb-C),, 3.412(9) **A,** Rb-C-Rb 75.3(2) and C-Rb-C 104.7(2)".

As pointed out in a recent review, compared to organolithium compounds, much less attention has been paid to the analogues of the heavier Group 1 metals.1

We now report (i) the synthesis^{\ddagger} (Scheme 1) of four crystalline heavier alkali metal bis(trimethylsily1)methyls: $[Na(\mu-R)]_{\infty}$ 1, $[Rb(\mu-R)(pmdeta)]_2$ 2, $[KR]_n$ 3, and $[KR(pmdeta)]_m$ 4 $[R = CH(SiMe_3)_2, pmdeta =$ $[R = CH(SiMe₃)₂,$ (Me2NCH2CH2)2NMe]; *(ii)* NMR spectral data for the hexane-soluble compounds **1,2** and **4;\$** and *(iii)* single crystal X-ray diffraction data for **1** (Fig. 1) and **2** (Fig. 2).0

f *Preparation of* **1:** Solid NaOBut (7.2 g, 75 mmol) was added in portions to a stirred solution of LiR (11.25 g, 67.7 mmol) in hexane (350 ml). The suspension was stirred for 2 days at *ca.* 25 "C and traces of insoluble material were filtered off. The filtrate was concentrated (to *ca.* 80 ml), then cooled $(-30 °C)$ for several days yielding colourless crystals of almost pure **1,** which were recrystallised from hexane, affording 1 (9.8 g, 80%), m.p. 130–132 °C, NMR (C_6D_6 , 305 K) **lH: 6** 0.20 (Me), -2.04 (CH); 13C{'H}: **6** 6.99 (Me), 0.44 (CH); 29Si{1H}: **6** 12.44. Crystalline LiR (91%) was prepared from RBr in $Et₂O$ and $LiBuⁿ$ in hexane.

Preparation of 2: Solid LiR (0.71 g, 4.28 mmol) was added to a suspension of RbOAr ($Ar = C_6H_2Bu_2^2-2,6$ -Me-4) (1.48 g, 4.27 mmol) in hexane (25 ml). The mixture was stirred for 10 h at *ca.* 25 "C. Tetrahydrofuran (thf) (10 **rnl)** was added and the pale-yellow solution was concentrated and cooled at -30 °C; colourless, crystalline LiOAr(thf) (m.p. 256-258 °C)² was filtered off. Pmedta (0.74 g, 4.27 mmol) was added to the filtrate; the mixture was filtered, the filtrate concentrated and cooled to give pale-yellow crystals of **2** (1.2 **g,** 67%), m.p. 62-64 °C; ¹H NMR (C₆D₆, 305 K): δ 2.12 (m, CH₂), 1.98 (s, NMe), 0.45 (s, $Sime_3$), -1.70 (CH). The RbOAr was prepared from Rb (1.0 g) and ArOH (2.55 g) in C_6H_{14} .

Preparation of *3 and* **4:** *3* was prepared from LiR (0.62 g, 3.73 mmol) and KOBut (0.40 g, 3.57 mmol) in a similar fashion to that described for **1,** except that **3** (0.65 g, 93%) was the hexane-insoluble component. A solution of pmdeta (0.57 g, 3.3 mmol) and **3** (0.65 g, 3.3 mmol) in hexane (50 ml) at -20 "C yielded pale-yellow crystals of **4** CH;?), 2.21 **(s,** NMe), -0.10 **(s,** SiMe3), -2.11 **(s,** CH). (1.02 g, 84%), m.p. 58-60 "C; 'H NMR (C6D6, 305 K): **6** 2.36 (m,

§ Crystal data: For each structure data were measured for $2 < \theta < 25^{\circ}$ using monochromated Mo-K α radiation ($\lambda = 0.71069$ Å) on an Enraf-Nonius CAD4 diffractometer. Structure solution was by heavy atom methods for the Rb alkyl2 or direct methods for the Na alkyl **1** using SHELXS86.

(i) Na alkyl 1 (orthorhombic form). $C_7H_{19}NaSi_2$, $M = 182.4$, orthorhombic, $P2_12_12_1$, $a = 11.397(4)$, $b = 12.207(3)$, $c = 34.962(11)$ A, $U = 4863.9 \text{ Å}^3$, $Z = 16$, $D_c = 1.00 \text{ g cm}^{-3}$, $\mu = 2.6 \text{ cm}^{-1}$, $F(000) =$ 1600, *T* = 173 K. 4805 Unique reflections, 3881 observed for *I* > $2\sigma(I)$, $R = 0.044$, $R_w = 0.048$, $S = 1.3$, 377 variables. Methyl H atoms fixed, others located and refined.

(ii) Na alkyl 1 (monoclinic form). $C_7H_{19}NaSi_2$, $M = 182.4$, monoclinic, $P2_1/n$, $a = 10.373(2)$, $b = 12.871(3)$, $c = 19.204(9)$ Å, $\beta =$ 97.13(3)°, $U = 2544.0 \text{ Å}^3$, $Z = 8$, $D_c = 0.95 \text{ g cm}^{-3}$, $\mu = 2.5 \text{ cm}^{-1}$, $F(000) = 800$, $T = 293$ K. 4939 Unique reflections, 1422 observed for *I* $> \sigma(I)$, $R = 0.110$, $R_w = 0.125$, $S = 3.2$, 181 variables. All H atoms omitted.

 (iii) Rb alkyl 2. C₃₂H₈₄N₆Rb₂Si₄, *M* = 836.4, monoclinic, *P*2₁/*n*, *a* = 11.871(6), $b = 11.936(3)$, $c = 18.275(5)$ Å, $\beta = 100.87(3)$ °, $U = 2542.8$ \mathring{A}^3 , $Z = 2$, $D_c = 1.09$ g cm⁻³, $\mu = 19.9$ cm⁻¹, $F(000) = 896$, $T = 293$ K. 4694 Unique reflections, 1603 observed for $I > 3\sigma(I)$, $R = 0.050$, $R_w =$ 0.065 , $S = 1.9$, 199 variables. Methyl H atoms fixed, rest omitted.

The alkylating agent for each of **1-4** was the crystalline, lipophilic, and volatile lithium alkyl LiR.3 For the homoleptic compounds **1** and **3,** the co-reagent was the appropriate metal tert-butoxide with hexane as solvent. The key to the synthesis was the somewhat greater hexane-solubility of the lithium tert-butoxide co-product, which permitted the less soluble **1** to be readily separated. For the insoluble $[KR]_n$ 3, repeated removal by extraction of the sparingly soluble KOBut with C_6H_{14} led to its purification. For $[Rb(\mu-R)(pmdeta)]_2$ 2, we turned to an \neg OAr/R \neg (Ar = a 2,6-di-tert-butylphenyl group) rather than the -OBu^t/R⁻ displacement reaction, the Rb starting aryloxide being somewhat more soluble than the tert-butoxide. That strategy had previously been introduced by us into $tin(11)^4$ and 4f element⁵ chemistry; for example $Li(OC_6H_3Bu_2.2,6)$, unlike $[LnR_3]$ or $[Ln(OAr)_3]$ (Ln = La or Sm), is hexane-insoluble.⁵ The isoleptic potassium analogue of 2, $[K(R)(pmdeta)]_m$ 4, obtained from 3 + pmdeta, had similar NMR spectral characteristics to **2,\$** and hence **2** and **4** are probably isostructural.

The sodium alkyl $[Na(\mu-R)]_{\infty}$ 1 crystallises in two different crystal forms, with both showing the same structural motif of chains of the compound. For the monoclinic form the diffraction data are poor; hence only the crystal data are listed. **0** The orthorhombic form gave excellent diffraction data and the resulting structure is shown in Fig. 1.

The orthorhombic form of Na[CH(SiMe3)2] **1,** crystallised from benzene, consists **of** chains of alternating cations and anions. The anions are planar with average dimensions C-Si 1.806(3), C-H 0.81(1) Å, Si-C-Si 129(1) and Si-C-H 115(2)°. The planes of the anions are roughly perpendicular to the chains with average Na–C distances of $2.555(10)$ Å for the symmetrically bridging Na cations. The two Na cations on either side of the R^- anion complete a distorted trigonal bipyramidal geometry about the central C atoms with Na-C-H averaging $76(3)°$ and Na-C-Na 152(1)°. The coordination at Na is bent two-coordinate with C-Na-C averaging 143(6)^o. In addition, there are methyl groups close to the Na cations giving rise to short Na...H contacts: Na(1)...H(5b) 2.62, $Na(1) \cdots H(5c)$ 2.60, $Na(2) \cdots H(7b)$ 2.43, $Na(2) \cdots H(8b)$ 2.57, Na(2)...H(13b) 2.40, Na(2)...H(15b) 2.50, Na(3)...H(12c) 2.54, Na(3)...H(19b) 2.65, Na(4)...H(17b) 2.56, 2.54, Na(3)...H(19b) *2.65,* Na(4)-..H(17b) 2.56, $Na(4) \cdots H(17c)$ 2.52, $Na(4) \cdots H(25b)$ 2.46 and $Na(4) \cdots H(27c)$ 2.65 A.

Scheme 1 Synthesis **of** alkyls of Na, K and Rb: complexes **1-4** [R = $CH(SiMe₃)₂$, pmdeta = $(Me₂NCH₂CH₂)₂NMe] $\ddagger$$

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

t No reprints available.

Fig. 1. The X-ray structure and atom labelling for $[Na(\mu-R)]_{\infty}$ 1

Fig. 2. The X-ray structure and atom labelling for $[Rb(\mu-R)-]$ $(p$ mdeta) $]_2$ 2

The monoclinic form of **1,** crystallised from hexane, contains similar chains of alternating cations and anions with essentially the same geometry.

In the rubidium alkyl $[Rb(\mu-R)(pmdeta)]_2$ 2 there are discrete dimers with the Rb atoms bridged by the two alkyl groups. Although the H atoms on the bridging C atoms have not been located, it seems likely that the alkyl anions are planar. The Si-C-Si angle is $125.5(5)^\circ$, with Si-C 1.744(9) and 1.829(8) A. The endocyclic ring angles are $104.7(2)^\circ$ at C(10) and $75.3(2)$ ^o at Rb. The coordination at Rb is completed by the three Rb-N bonds averaging $3.11(1)$ Å, with Rb-C(10) 3.361(9) and Rb–C(10') 3.485(8) Å.

The low coordination number of two for sodium in crystalline $[Na(\mu-R)]_{\infty}$ **1** has a single precedent: the isoelectronic crystalline $[Na{ μ -N(SiMe₃)₂}$]_∞⁶ is isostructural with **1**. Both compounds are hexane-soluble and volatile below 150 "C at 10^{-2} Torr, and thus probably are of low molecular mass in the gas phase (their structures by gas phase electron diffraction are under investigation; the Na compound was believed to be largely monomeric in the gas phase). By contrast, lithium bis(trimethylsily1)amide is a trimer in the crystal,8 but a dimer in the vapour;⁹ crystalline $[K{ \mu \text{-}N(SiMe₃)}_2]_2$ is hexanesoluble and in view of its low electrical conductivity has been described as having strong ion-pairing. **10** The rubidium and caesium analogues have been X-ray-characterised as their dioxane adducts, the polymeric dioxane-linked dimers $[M(\{\mu\text{-}N(SiMe_3)_2\} (OC_4H_8O))_2(O_2C_4H_8)]_{\infty}$,¹¹ each Rb or Cs atom (M) being four-coordinate, unlike the five-coordinate Rb in $[Rb(\mu-R)(pmdeta)]_2$ 2, $[Rb-N(1)$ 3.112(7), Rb-N(2) 3.093(7), $R\ddot{b} - N(3)$ 3.131(7) Å].

Crystalline $[Na(\mu-R)]_{\infty}$ 1 and the lithium analogue are isostructural; the latter is a monomer in the vapour (at 100 *"C* and 10^{-2} Torr).³ The dimeric structure of crystalline 2 has some similarity in its bis(alkyl)-bridging and five-coordinate α -carbon with the well-known and archetypal electron-deficient compounds $[AlMe_2(\mu-Me)]_2$ or $[Be(\mu-Me)_2)_{\infty}$. By contrast, the crystalline lithium compound isoleptic with **2** is a monomer, [LiR(pmdeta)], having four-coordination for both the metal and the ligating carbon.12

The structural data here presented for compounds **1** and **2** are available for comparison with those for others in the literature. **1** For homoleptic alkyls, data are available for NaMe, NaEt, KMe and CsMe; *e.g.*, [(NaMe)₄]_∞ has fourcoordinate sodium with Na–C 2.58–2.64 \AA and intermolecular contacts of 2.76 \AA ;¹³ while each metal and carbon is six-coordinate in the heavier Group 1 metal methyls.14 One example of a heavier alkali metal σ -hydrocarbyl containing double bridges had been established prior to **2:** [Na(p-Ph)(pmdeta)]₂ has $(Na-C)_{av}$ 2.670(7), Na-NMe₂ 2.661(1), and Na-NMe 3.237(3) A.15 In the latter, unlike in **2,** it appears that pmdeta behaves as a bi- and not as a tri- (as in 2)-dentate ligand.

The results here presented on the heavier alkali metal **bis(trimethylsily1)methyls** provide further illustrations of the versatility of the $\text{-CH}(Si\text{Me}_3)$ ₂ ligand.¹⁶

We thank SERC for a postdoctoral fellowship and the Chinese University of Hong Kong for study leave for **W.-P.** L., the Sir Run Run Shaw Foundation for a studentship for **L.** D., the Chinese Government and the British Council for a studentship for T. **S.,** and SERC for other support.

Received, 19th May 1993; Corn. 3/02868B

References

- **1 C. Schade and P. v. R. Schleyer,** *Adv. Organomet. Chem.,* **1987, 27, 169.**
- **2** B. **Cetinkaya, I. Gumriikcu,** M. **F. Lappert,** J. L. **Atwood, R. D. Rogers and** M. J. **Zaworotko,** *J. Am. Chem. SOC.,* **1980,102,2088.**
- **3 J.** L. **Atwood, T. Fjeldberg,** M. **F. Lappert,** N. **T. Luong-Thi, R. Shakir and A. J. Thorne,** *J. Chem. SOC., Chem. Commun.,* **1984, 1163.**
- **4 T. Fjeldberg, A. Haaland,** B. **E. R. Schilling,** M. **F. Lappert and A. J. Thorne,** *J. Chem. SOC., Dalton Trans.,* **1986, 1551.**
- **5** *P.* **B. Hitchcock,** M. **F. Lappert, R. G. Smith, R. A. Bartlett and P. P. Power,** *J. Chem. SOC., Chem. Commun.,* **1988, 1007.**
- **6 R. Griining and J.** L. **Atwood,** *J. Organornet. Chem.,* **1977, 137, 101**
- **7 J. C. Green,** M. **Payne, E. A. Seddon and R. A. Andersen,** *J. Chem. SOC., Dalton Trans.,* **1982, 887.**
- **8 R. D. Rogers,** J. **L. Atwood and R. Griining,** *J. Organomet. Chem.,* **1978, 157, 229.**
- **9 T. Fjeldberg,** M. **F. Lappert and A.** J. **Thorne,** *J. Mol. Struct.,* **1984, 125,265.**
- 10 K. F. Tesh, T. P. Hanusa and J. C. Huffman, *Inorg. Chem.*, 1990, **29, 1584.**
- 11 F. T. Edelmann, F. Pauer, M. Wedler and D. Stalke, *Inorg. Chem.,* **1992,31, 4143.**
- **12** M. **F. Lappert, L.** M. **Engelhardt, C. L. Raston and A.** H. **White,** *J. Chem. SOC., Chem. Commun.,* **1982, 1323.**
- **13 E. Weiss, S. Corbelin, J. K. Cockcroft and A.** N. **Fitch,** *Chem. Ber.,* **1990, 123, 1629.**
- 14 E.g. KCD₃: E. Weiss, T. Lambertsen, B. Schubert and J. K. **Cockcroft,** *J. Organomet. Chem.,* **1988,** *358,* **1 (like NaCD3: neutron diffraction on powder; for NaCD₃ also using synchrotron radiation).**
- **15 U. Schiimann, U. Behrens and E. Weiss,** *Angew. Chem., Int. Ed. Engl.,* **1989, 28, 476.**
- **16** M. **F. Lappert,** *Proceedings of the IXth International Symposium on Organosilicon Chemistry,* **ed. A. R. Bassindale and P. G. Gaspar. The Royal Society of Chemistry, Cambridge 1991, pp. 231-252.**